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Quantised spin-1 field in flat Cliff ord-Klein space-times 

S D Unwint 
Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, 
England 

Received 26 March 1979, in final form 18 July 1979 

Abstract. We calculate the finite-temperature stress tensor for massive and massless spin-1 
fields in static space-times T O M ,  where M is a flat Clifford-Klein space form [W3/r. The 
2-torus and Klein bottle, S'@S'O[W' and [W10K2 respectively, are chosen as M for 
detailed calculations, and we quote results for K1. 

1. Introduction 

It is well known that the introduction of topological constraints upon a quantised field 
results in a shift of the stress-energy-momentum expectation values, this effect being 
named after Casimir (1948), who first calculated the vacuum energy between conduc- 
ting plates associated with the electromagnetic field, and predicted an attractive force 
between the plates. More recently, Isham (1978) and Avis and Isham (1978) have 
discussed quantised fields in topologically non-trivial space-times, and DeWitt et a1 
(1978) and Dowker and Banach (1978) have performed covariant Casimir calculations 
for the massless scalar field in several flat multiply connected spaces of the type M O  T, 
where 

M = R3/r ,  

r being isomorphic to the fundamental group of M. Their method, in short, is to express 
the stress expectation values as the coincidence limit of a bilinear operator acting on the 
Feynman propagator for the manifold, 

whers y E r and &x, x ' )  is the scalar Feynman propagator in R 3 0  T. When y is the 
identity element e, the infinite Minkowski stress is obtained, and each element y # e 
then contributes to the finite correction. Here, we shall extend this type of treatment to 
massive and massless spin- 1 fields to discover their peculiar properties in non-trivial 
multiply connected spaces. It should be pointed out that Brown and Maclay (1969) 
have already performed rather elegant covariant Casimir calculations for the elec- 
tromagnetic field between parallel plates, but the simplicity of this geometry allowed 
them to deal with the E and B fields without introducing vector potentials, and the 
above-mentioned peculiarities did not arise. 

t Work supported by an SRC Research Studentship. 
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3 14 S D Unwin 

2. Spin-1 formalism in R 3 0  T 

We first write down the Lagrangian density for a massive spin-1 field, 

2v= -JF,yFcLy +$m*A,A” 

where FWy =&A, -d,A, and g,, = diag(1, -1, -1, -1). As m + 0, the gauge breaking 
mass term vanishes, and in order to obtain a covariant propagator for the massless 
vector field, the Lagrangian must be modified. The physical consequences we under- 
stand in terms of the number of degrees of freedom associated with the field at each 
point in space. The massive vector field is constrained by 

d,AF = 0 

and hence has three degrees of freedom, that is, it has the helicity modes * l ,  0. In the 
massless limit, using a,AW = 0 to define the gauge, the zero-helicity modes decouple, as 
they could only couple to dJ’, which is zero. The massless field therefore has only two 
degrees of freedom. Foreseeing difficulties for m + 0, we follow Lautrup’s (1967) 
treatment of the electromagnetic field and then extend it to finite mass. He starts in the 
analogue of the classical Lorentz gauge, d,AW = 0, and adds a Lagrange multiplier to 
the usual massless Lagrangian density: 

9 = -:F,yF*” - Ad,A ,. 

2= -1. 4F,,,F’ILv - &,Aw + F(A(x)) ,  

(1) 

A is interpreted as a scalar field and we generalise equation (1) slightly to 

(2) 

where F ( z )  is a holomorphic function with F(0)  = F’(0)  = 0. The variation of equation 
(2) with respect to A gives 

a,Aw = F‘(A(x)) ,  

that is, the equation of motion for A gives us the constraint on AW. We now make the 
special choice 

F(A)  = $aA2, 

where a is a real number, and. the gauge condition reads 

d,AW = a A, 

so we effectively have a gauge breaking term 

zB = - (a,AP)’/2a 

in the Lagrangian. Now we restore the symmetry broken by LfB with a ghost field (e.g. 
Lee 1976), and then include the mass terms: 

2G = -a,+*acl+ + m2+*4. 
Our final Lagrangian is 

2 = 2 v  +PB +ZG = -$F,,.F,”” + $m2A,AF - (aWA”)’/2a - a,+*ap+ + m24*c$, (3) 

so that we now obtain the correct m + O  behaviour in the observables. The massive 
results are obtained by dropping any ghost contributions to the observables and taking 
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the a + m limit which sets TB to zero. Variation of equation (3) leads to the equations of 
motion 

(gMY(n-t m 2 ) + [ ( l  -a)/a]a,a,}A"= 0 (4) 

(U -I- m 2 ) 4  = 0 ,  (U+m2)4*=0 .  (5) 

and 

Equation (4) leads to the one-parameter family of Feynman propagators, 

(o~T{A"(x)A"'(~')}~o) = ifiau'(x, x') 

d4k exp[-ik,(x -x')@]knkYS::' 
(k2-m2+ie)(k2-m2a +ie)  

where AF is the scalar Feynman propagator satisfying 

d4k exp[-ik,(x --x')"] 
( o + m 2 ) b F ( X , X ' ) = - - C j ( X - x ' ) ,  'F(', 1 (271.)4(k2-m2+ie) ' ( 7 )  

This family of gauges (m + 0) is the quantum generalisation of the classical Lorentz 
gauge, in that 

al*(A@) = 0 

for all physically realisable states. From equations (5) we have 

(oIT{4(~)4*(x')}Io) = &(x, x'). 
Now, having expressions for the propagators, we require expressions for the stress 
expectation values in terms of these propagators. We define the stress tensor Twy as the 
response in the action functional to variations in the metric, 

where g = det g,,, and 

Replacing partial with covariant derivatives where necessary in equation (31, and using 
equation (8) we have, after returning to flat space, 

T,,, = T:,, + TEy + TE, 

T:,, = --F,,F," +ig,,.FapFap + m2A,A, -im2g,A,A", 
where 

TEv = (1 / a ) ( A ,  a,a,A" + A ,  a, 3,A .- g l * A ,  a" a p A P  - ;ggY (8,A" j2) ,  

= -a,4a,,4* -a,,4aF4* +g,,(a,4an4* - m244*). 
Note that TE, corresponds to the minimally coupled scalar field, otherwise it would not 
cancel ( T,,)' as m 9 0.  The stress vacuum expectation values are written as 
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I -  

(T,,)B = (i/a) x lim[-$g,,,a,am 'X D E ,  - g,,,g;'a,,a,,fipm'+ a,,,a,,~$ + a,.a,,fi:'], ( 9 b )  

( 9 c )  2 "  ( f',,)G = i lim[-a,a,, - aU,aw f g,,,,g$aPap' - g,,,,m ]A,, 

where ( x  - x ' ) , ( x  -xr), > 0. Up to now we have been working in Minkowski space and 
each (f,,) is formally divergent. In the next section, we impose topological constraints 
on the spatial section of the manifold and take the (T,,)'S to be defined by the equations 
(9 ) ,  only making the replacements aF+ A F  and d,,,+ D,,,, where A F  and Dap, are the 
propagators for the multiply connected space minus the Minkowski contributions. 

X ' f X  

3. Topological constraints 

We choose the subspace K2 (Wolf 1967),  the Klein bottle (non-orientable) which is the 
plane R2 factored by the group making the identities 

y :  (x, y ) + ( x + n b ,  ( - l ) " y + 2 k c ) ,  

where n, k are integers and the area of the Klein battle is b x 2c. For the ghost field, we 
interpret the identifications as 

~ ( ~ , y , ~ , t ) = ~ ( ~ + n b , ( - l ) " y + 2 k ~ , ~ , t )  

and for the vector field we write 

A,(x, y ,  z ,  t )  = (1-2SY,)"A,(x+nb, ( - l ) "y+2kc ,  z ,  t )  (10 )  
with no sum on p, that is, a reversal of vectors in the y direction after one traversal of the 
Klein bottle in the x direction. We shall work at finite temperature, which just involves 
introducing images along the imaginary time axis (e.g. Brown and Maclay 1969) in the 
propagators. So for our Klein bottle propagators we have 

03 

AF(x, x ' )  = 1' L F ( x  - x r y ,  t - t ' -  irp), 
y , r = - a  

where p is the inverse temperature. The Minkowski term y = e, r = 0 is the source of 
divergences and hence is dropped in C r .  We have 

A F ~ x ,  x')  = A ~ ( x ,  xr) +A$(x, X I ) ,  

where 

and 

Likewise, 

where 

-a2 

03 

A$ = bF[x - x r  - ( 2 n  + l ) b ,  y + y' - 2kc, z - z ' ,  t - t' - irp]. (12 )  
n, k,  r 
-W 

D,~ , (X ,  x ' )  = D&p,(x, x') + D&'(x,  x'), 

m 
D&p' = 1' d m p , ( x - x ' - 2 n b , y - y ' - 2 k c ,  Z - z ' ,  t--t'--irp) (13 )  

n , k r  
-W 
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and 
iu 

Dip '= 1 q p , d a p , [ ~ - x t - ( 2 n + l ) b ,  y+y t -2kc , z -z ' ,  t-t'-irp], (14) 
n , k r  
--00 

with qp,= (1 - 2S,,p,), and no sum on p ' .  We notice that equations (11) and (13) are just 
the propagators for the spatial section SIOSIOR1, so the Klein bottle stress expec- 
tation values will consist of the 2-torus subspace results (2b x 2c), with correction terms. 
Calculations are simplified by noting that 

a, Af. = -a,jA&SL', a,A; = --q,a,'A;ti;', 
(15) 

a,~;~,  = -a,,D&,,SE', d,D& -q,a,,D&,SL'. 

Also, if p # Y then 

lim a,d,AF = lim a,aJ3"" = g,, = 0 ,  (16) 
x + x  x ' + x  

and since elements of (T,,) must be proportional to a combination of the above, all 
off-diagonal elements are zero. 

4. The calculations 

Incorporating equations (7), (15) and (16) into equation (9), we find, using the notation 
that ( T,,)' corresponds to the 2-torus part of our results, and ( T,,)" to the Klein bottle 
correction, 

(Twv)"'=i lim [(7g,,-2d,aV)Af. m2 
X"X 

m2t1 - -a )  d4k exp[-ik,(x -x'w)"l(2k,k, -k2g,,) +? 2 ( 2 4 4  (k2-m2+ic) (k2-m2a+ie)  

d4k exp[-ik, (x - x'w)"]k2(g,,k2 - 4k,k,) '5'31 (k2 -m2+ie ) (k2 -m2a+ie )  

(T,Y)'G = 2i lim (a,d,A&), 

where w : (x, y ,  z ,  t )  + (x + 2nb, y + 2kc, z ,  t + irp). 

x 'X 

m = 0 :  

As required, we find 

(T,,)bB++(T,,)6G=o 

and so 

(T,,)b = (TWy)6" = -2i lim a,a,A;.. 
x + x  
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m ZO: 

Now 
(T,u):+(T,u)F# 0 ,  

and to find the stress expectation values, we let a + 00, setting 9B to zero, and ignore any 
ghost contributions: 

( T,,,); = -3i lim a,a,,Af;.. 
x - x  

Now we look at the Klein bottle correction terms: 

d4k exp[-ik,(x -x’rl)“]k2[2g,,k; +(g,,,/2)k2-2k 
(k2-m2+ie) (k2-m2a +ie) 

( TWVj,rG = -2i lim (g,,d,d, - d,dyq,,)A$, 
x ” x  

where 77: (x ,y , z , t )+ [x f (2n+ l )b ,  -y+2kc,z,  t+irP]. 

m =0: 

Again we have 

(TWY>GB +(T,,,)GG = 0, 
so 

(TWY)G = (T,”);I” = 0. 

m ZO: 
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(30) 

We could now calculate (TKV)” and (TNV),,,  explicitly in terms of the inverse temperature 
and the dimensions of the Klein bottle; however, our interest is the behaviour of the 
spin-1 field in non-trivial flat spaces, and so we shall express our results in terms of 
(TPY)’, the stress expectation values for a scalar field of the same mass, in the same 
space. Some scalar field results are quoted in the Appendix. 

5. Results 

We shall briefly cover the scalar field results. As in our case, the s t r c s  expectation 
values split up into a 2-torus contribution, ( TFY)”,  and a Klein bottle corremon, (TKL)”’. 
We may choose the equation of motion for the scalar field, 

( O + m 2 + ~ R ) $ = 0 ,  

where R is the scalar curvature of the manifold, to be either confnrmally or minimally 
coupled. When 5 = 0, the field is said to be minimally coupled, and when 8 = b, the field 
is conformally invariant as m -+ 0. Since TFY depends upon the response of the action 
functional S to variations in the metric, and S depends upon the equation of motion for 
the field, then TKY depends upon our choice of 5. Our notation is that (TKv)k 
corresponds to 6 = 0, and (T,,,); to 6 = 2. It turns out that 

(T,,): = ( TFL,): = ( TFY)” 

where of course we are relating vector and scalar fields of the same mass. Now 
equations (21) and (23) might have been expected from the arguments in 4 2, where we 
discussed the number of degrees of freedom associated with the spin-1 field, and indeed 
we have a discontinuity in (TGv)‘ at m = 0. However, equations (22) and (24) cannot be 
similarly explained, and result from global properties of the manifold. First we note 
that ( T K y ) k  is related to the minimally coupled scalar field value, and that its trace is 
given by 

Hence, if (T,,); were given by ( TKY);  = lim,+o k (  T,,,);, with k a non-zero real number, 
we would be presented with a trace anomaly, as (Tc) :  would not vanish. However, 
(T&v): is not given by this limit and is trivially traceless, as seen in equation (22), 
reflecting the field’s conformal invariance. 
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Mathematically, we may pinpoint the source of the rather strange behaviour 
exhibited in equation (24) .  If in the expression (14)  for the vector field propagator we 
did not include the qa,, that is, we did not reverse vectors in the y direction after a 
traversal of the Klein bottle in the x direction, we would calculate 

which might have been explained in terms of our degrees of freedom argument, but our 
massless results could not be obtained from this treatment, since now 

( T , , ) ; ~ + ( T , ~ ) ; ~  # 0. 

Omitting q ;  from equation (10) is, of course, not an alternative representation of the 
Klein bottle topological group. A consequence of equation (10)  is that 

a,a,A,(x, y ,  Z, t )  = q:q;q;aaapA,(x + nb, (-1)"y + 2kc, Z, t ) t .  (25)  

If the A,'s are dynamically constrained by equation ( 4 )  at some point ( x ' ,  y l ,  z ' ,  tf), then 
this condition, in conjunction with the topological constraint (25) ,  should automatically 
lead to the A,'s satisfying ( 4 )  at all image points of (XI, yf, z ' ,  t ' ) .  This is not the case if 
we omit q;  from equation ( 2 5 ) .  

6. Electromagnetic field 

Of particular interest is the m = 0 (electromagnetic) case. Since only (T, ,) f  and 
( Tfiv)Es are y dependent, while (TFY)" is not (see the Appendix), we find that the stress 
expectation values for the electromagnetic field, unlike those of the scalar field, are 
position independent. We cannot conclude that all observables are position indepen- 
dent. In  particular, we have for the E and B fields 

or 

1 Zf 4n2b2+4k2c2-3r2p2 1 2 ( y - k ~ ) ~ - ( 2 n + l ) ~ b ~ - r ~ p ~  
((B')) = - d , ] , k , ,  ( 4 n 2 b 2 + 4 k 2 ~ 2 + r 2 p 2 ) 3 f  z , r [ ( 2 n  + 1)'b2+4(y - k ~ ) ~ + r  p ] 2 2 3) .  
( E 2 )  

--oo -m 

Another interesting point is what we mean by demanding that the electromagnetic 
field satisfies the Klein bottle topological constraints. We have interpreted this as 
equation (lo), which implies in terms of the physical fields that 

FfiY(x, y ,  z,  t )  = q:qCF,,(x + nb, (-1)"y +.kc, 2, t )  

or 

( x  + nh, (-1)"y + 2kc, z, t )  

f By this, we mean 



Quantised spin- 1 field in Clifford-Klein space-times 321 

and 

Clearly, we may not replace A,  by Bi in equation (10) to obtain equivalent conditions. 
What if instead of having equation (10)  as our starting point, we put the Klein bottle 
constraints on both the physical fields, i.e. 

or 
F,,,(x, Y ,  2, t ) = p L J , , ( x + n b ,  (-1)"~ +2kc,  Z, t )  (27)  

with no sum on p, Y ,  where p,,, = 1 unless pu = 02,  20, 13, 31, in which case p,,, = -l? 
From equation (27)  we have 

alLF,,,(x, y ,  z ,  t )  = qLpL,,8FFy(x +nb, (-1)"y +2kc, z ,  t ) .  

If dFF,,,(x, y ,  z ,  t )  = 0, it does not follow that a"F,,,(x + nb, (-1)"y + 2kc, z,  t )  = 0, that 
is, the E and B fields described by equation (26)  do not globally satisfy Maxwell's 
equations. It is easy to show that neither are the remaining Maxwell equations globally 
satisfied. Noting however that (10) leads to a twisted B field, we may transfer the trivial 
representation of the Klein bottle group to the B field by twisting the A,  and E fields, 
that is, including a factor of (-1)" on the right of (10) (and the corresponding ghost 
equation). This just changes the sign of ( TFu)& which is anyway zero. 

7. Another multiply connected space 

Here we quote the results for the space K1 (Wolf 1967), where in the spatial section we 
make the point identifications 

( x ,  y ,  z )  + ( x  + nb, (-1)"y + 2kc, ( - 1 ) " ~ ) .  

Although this space, unlike R' OK2,  is orientable, it makes an interesting comparison 
with the Klein bottle in that now we have two perpendicular twists in the space, i.e. we 
must reverse vectors in both the y and z directions after a traversal in the x direction. 
This reduces to replacing equation (10) by 

A,(x, y ,  z ,  t)=(1-2S,,)"(l-2S,,)"A,(x+nb, ( - l )"y+2kc ,  ( - l )"z ,  t ) .  (28)  

To quote the results, again we compare with the scalar field results in the same space. 
Once more we have a contribution to (T,,,) which is identical to the 2-torus (2b x 2c)  
result, and we will not repeat it. We give the correction contributions ( T,,,)": 
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(T; ) ;  = 0 again, reflecting the conformal invariance of the massless spin-1 field. It is 
interesting to note that in the electromagnetic case, Ei or Bi may be substituted for A,  
in equation (28 ) ,  resulting in equivalent constraints. This is a consequence of the 
orientability of K1. 

8. Conclusions 

We already know that the global topology of the space in which a field is quantised can 
affect local quantities such as (T,,). If we were to use the local ‘degrees of freedom’ 
argument to predict the spin-1 ( T,,) in terms of the scalar (T,,), we would be assuming 
that the global topology imposes similar constraints on both scalar and vector functions. 
In certain spaces, such as Minkowski space and the 2-torus, this is true. However, in 
less trivial spaces, the scalar and vector constraints are quite distinguishable, resulting in 
( TFY)’s which are not simply related. 

Future work will include an investigation of scalar and vector field thermodynamics 
in multiply connected spaces. 
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Appendix: Some scalar field results 

2-torus ( 2 b  x 2 c ) :  

-02 

IS  4 n 2 b 2 + 4 k 2 ~ 2 - 3 r 2 / 3 2  
6 

Y n k r  
-m 

where Ynkr = ( 4 n 2 b 2 + 4 k 2 c 2  + r2p2)1’2 and K ,  is a modified Bessel function of the third 
kind. 

R’ 0 K2 correction terms 

-02 

( 2 n + 1 ) 2 b 2 - 4 ( y - k c ) 2 - r  
6 

m=O 7T n,k,r V n k r  
-- m 
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-W 

where U n k r  = [ ( 2 n  + 1)’b2 + 4 ( y  - kc)’+ r 2 P 2 1 1/2 

K1 correction terms 

3(2n + 1)2b2 - 4 ( y  - kc)’ - 4 z 2  - r2p2  
6 

m=O 277 n,k,r v n k r  
-m 

5 ( 2 n + 1 ) 2 b 2 + 4 ( y - k c ) 2 + 4 z 2 - 7 r  
6 

V n k r  
--W 

2 2 1/2 where Vnkr = [ (2n  + 1)’b2 + 4 ( y  - kc)’ + 4 z 2  + r p ] 
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